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PLANAR STANDING AND MARKING-TIME REGIMES OF 
A BIPEDAL WALKING DEVICE* 

V.V. BELBTSKII and M.D. GCLUBITSKAYA 

A walking device standing on one leg, not fastened at its point5 of 
support, is considered. A study is made of how the device maintains 
equilibrium of its supporting leg by compensating oscillations of its 
body. Phase trajectories are analysed. Conditions are investigated 
under which one-way communication is maintained and discontinued while 
the device is moving. Marking-time regimes are constructed. 

The problem of a standing walking device is interesting, first, as a 
problem in the dynamics of servosystems, and, second, as a limiting case 
of the problem of locomotion. Marking-time regimes may be used in con- 
structing a model of space locomotion**. (**Beletskii V.V. and Golubitskaya 
M.D., Model problem of the dynamics of bipedal space locomotion. Preprint 
194, Moscow, Inst. Prikl. Mat. Akad. Nauk SSSR, 1982). 

1. Description of the mode?,. Equatio?ls of the standi?lgpwbtem. We I conoidef' a bi- 

pedal walking device consisting of a heavy rigid body and atpair of identicalwkightless 
legs (Fig.1) ; each leg may consist of one or several segments. The legs are attached to the 
body of the device by double hinges at a point 0. The device is assumed to be supported on 
one leg only. The leg is in contact with the supporting surface at a single point S, at which 
there acts a reaction force R,; communication with the surface is one-way (non-restoring). 
At the hinge 0 a controlling torque Q acts on the body and a torque -Q on the leg. 

We assume that the supporting leg is maintained in equilibrium - the suspension point 0 
and support point S remain fixed. The system is subject to feedback: the motion of the body 
is designed to maintain equilibrium of the supporting leg. 

We shall consider planar regimes of motion. Fix a coordinate frame NXYZ (Fig.1) , 
where N is the origin and the NZ axis is directed vertically upward. The support and 
suspension point5 are assumed to lie in the NYZ plane: S = (0, d,O), where d = const, d,O, 
is the horizontal displacement of the support, and 0 = (0, 0, H), where H = con&, H> 0, is 

the height of the suspension point of the legs. It is assumed that the body does not spin; 
the centre of mass C moves in the NYZ plane. 

We adopt the following notation: 0 is the angle between the NZ 'axis and the vector OC 
in the positively oriented system NXYZ (Fig.11, t is the time, g is the acceleration of free. 

*Prikl.Matem.Mekhan.,53,2,226-237,1989 
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fall, M is the mass of the body, J, Jc are the moments 
points 0 and C, and p = OC is the distance from 0 to the 

We introduce the following non-dimensional variables 

of inertia of the body about the 

centre of mass. 

(l-1) 

The derivative of 0 with respect to non-dimensional time 'I is denoted by 0'. 
Under our assumptions, the equation of motion of the body in the variables (1.1) /l/ 

may be reduced to the form 

CD (e) 8” + 9 l3'% = j (6 + sin 0) 

@ (0) = j + hcos 0 + 6 sin 8 q\ x Equation (1.2) has a first I l7 
0' =+ 1/F (0) +c 

- a@) ’ 

(1.2) 

(1.3) 

integral /l/ Ic is a constant of integration) 

E(e)=fftn(e)(6+sine)de (1.4) 
0 

u I The expression for the controlling torque in the variables (1.1) /2/ 
is 

4=--6+-L i (ettg-w$f-) (1.5) 

The formula for the vertical reaction /2/ may be transformed as 
follows: 

Fig. 1 (1.6) 

Using (1.21, we eliminate e* from (1.51, (1.6): 

q = sin 8 - [j (6 + sin e) - ewmeiim (1.7) 

Rr = Ij (j - 1) + j cos e (h + cos e) -k e’2 (h + j cos e)l/(j@) (1.8) 

Motion of the system with non-restoring communication is realizable if the vertical 
reaction of the support is positive: Hz>O. In that case the control (1.7) leaves the 
supporting leg fixed and induces a compensating motion of the body , as described by integral 
(1.4). 

2. Analy8i8 of phase tmjectories for a device standing on a fastened tsg. 
Let us study the motion of the system on the assumption that the leg is fastened to the surface 
at S by a hinge. A partial investigation may be found in /l/; here we present a more 
rigorous analysis. 

Eq.tl.2) involves the following parameters: j is the moment of inertia of the body, 6 is 
the support displacement, and h is the height of the suspension point of the legs. The values 
of the parameters j, 6. h determine the form of the phase portrait of Eq.(l.Z). Define an 
additional parameter r = Jr62 + h2 - the distance from the support point to the suspension 
point (in the case of a one-segmented leg, r is simply the length of the leg). To fix our 
ideas, we assume that e65 [--2n,Ol. 

The main properties of the motion are as follows. 

If r>j, there exist critical values 8 = f3* at which the denominator of (1.7) vanishes: 
cf, (e*) = j + h cos e* + 6 S~II e*= 0. This equation has two solutions: 

.___ 
sine:, = (- jS:& h 1/ r2 - j2)/r2, cost& = (- jh TS l/r2 - ja )/r: (2.1) 

e,* E I--3m/2, --n/21, e,* E r--n, 01 

If the numerator in (1.7) does not vanish, then at 0 = e1,2* the controlling torque 4 
is infinitely large, and it is almost always impossible to keep the point 0 fixed; in other 
words, at positions el*, e,* the feedback loop is broken. This phenomenon was termed in 
/l, 2/ "parametric shock", since in the critical positions the absolute value of thesupporting 
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reaction increases without limit in absolute value. It is obvious from (1.4) that the 
angular velocity at O = I&** is also infinitely large, and the phase curves experience 
discontinuities. 

When S<l Eq. (1.2) has two steady-state solutions: 

sin&,, = - 6, cose;,,=~f'i-62 (2.2) 

eol E I-n, --n/21, e,o E [--n/2, 01 

Linearizing (1.2) in the neighbourhood of the point eio (i = 1, 2)) we obtain 

j cos 8.” 
cp”= *‘p, cp =e-eio, i = 1, 2 

1 

In the upper equilibrium position @((e,') =j - Sa + hvl- cY>O, since j> 1,6( 1. It 
follows from (2.2), (2.3) that the upper equilibrium is always unstable. 

The lower equilibrium position (coa e;(o) is stable if 

D (O,o) > O (2.4) 

and unstable if Q(O,'),< 0. The function m(O) takes negative values only in the case 

r> jY if e E (e,+, ez*); consequently, the stability of the stationary point Oao depends on 
its position relative to the critical points, Comparing sine," = --S and sin el,,*, we 
obtain 

(2.5) 

By (2.5), it is always true that el* <el (the discussion /l/ erroneously referred 
to the case el* > ep), and both cases e; .c e,* and elo 2 e,* are possible. The equilibrium 
position elo is unstable if and only if it lies between the critical positions; more 
precisely, if and only if O,"E (01*, OS*]. If r<j (there are no critical positions) or 
8,” > 82, the lower equilibrium position is stable. Written explicitly, the stability con- 
dition (2.4) is 

h <(j -@)/V/l (2.6) 

Let c* denote the values,of the integration constant for which the numerator in (1.7) 
vanishes at the same points O* as the denominator. The corresponding phase curves (1.4) are 
denoted by 6' (c*, O). By (1.7), 

e'z(ci*, ei*) = j(S + sin fJi*) ($(Oi*))-*, i = 1, 2 

Recall that e1.2* are the roots of the function D(O), at which it changes sign: d@ 
(e,*)ide < 0, m (e,*yde > 0. It is obvious from (2.5) that 6 + sin el* > 0. Consequently, at 
e = el* the right-hand side of (2.7) is negative and the real value of the angular velocity 
on the phase curve 8' (c,*, O) is undefined, so the feedback loop is broken. 

It follows from (2.5) that 6 + sinB,*>O if 

h2 (1 - P) > (j - S2)2 (2.8) 

Under these conditions the right-hand side of (2.7) is positive, the value of the angular 
velocity at 6 = I&* on the phase curve 6’ (ca*, O) is finite: 

Under conditions (2.8), there exists a phase curve 8’ (c,*,O) which is continuous at 
the critical point e,*. It can be shown that at O,* on the phase curve the acceleration 

8" (c,*, e,*) = jS(1 - j)l(3f/ra) of the body is continuous'and finite, as are the control and the 
reaction force; in other words,the feedback is maintained. 

Comparing conditions (2.6), (P.8), we note that if &<I, r>j, i.e., the critical 
points exist and are stationary, then passage through the critical point O,* at a finite 
angular velocity is possible if and only if the lower equilibrium position O1o is stable. 
And conversely. The phase curves are all discontinuous at OS* 
an unstable stationary point e,o (~09 e,Q < 0). 

if and only if there exists 

This analvsis shows that the surfaces 6 = 1. h = (j - P)/1/1 - &a, 1/P + ha = j (r = j) 
divide the pa&meter space (j,6, h) into subspaces, each"corrd&nding'to a qualitatively 
distinct phase portrait. The projection of this partition on a plane j = const is shwn in 
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Fig.2. Fig.3, a-e, illustrates the corresponding phase portraits. 

a 

Fig.2 

b 

1 
e 

Fig.3 

The phase portraits will now be described in detail. 
a) r<i, 6<i (Fig.2). There are two stationary points: a stable one 01' and an 

unstable one Ban. There are no critical points, The phase portrait for this case is shown 
in Fig.3a. In the neighbourhood of the stable equilibrium position the body has a region of 
oscillatory motions. All phase trajectories outside this region represent unlimited unwinding 
motion of the body. 

b) r<i,6>i (Fig.2). There are no stationary points, the region of oscillatory 
motions disappears. No points of discontinuity. All motions of the device reduce to unlimited 
unwinding of the body (Fig.3b). 

c) r>j, 6>1. No stationary points, two critical points %* and O,*. There is a 

phase curve that is continuous at f&* (Fig.3c). All phase trajectories are discontinuous: 
having starting to move from any position, the body will assume an infinite angular velocity 
within a finite time. The behaviour of the phase trajectories after "passing through" the 
critical points can be described in a purely formal manner as follows. The (0, 8') plane is 
divided by the phase trajectory W(c,*,O) into an inner region (discontinuous at 0 = 8,') and 
an outer region. The trajectories of the inner region resemble the closed trajectories of 
Fig.3a - a kind of "oscillation 'I about the critical point f$*. The other trajectories are 
analogous to the unlimited unwinding trajectories of Fig.3a (in each complete revolution the 
body must overcome two critical positions), 

d) r > J', 6 < 1, h < (1 - 6’)11/!- (Fig.2). Two stationary points 0,". %0, one of which is 
stable, and two critical points 01*, fla', through one of which there is a continuous phase 
curve. The phase portrait is shown in Fig.3d. The description in /1/ of this phase portrait 
and that corresponding to the case r= i,, S-1.is erroneous. 

el h > (1 - sz,/1/1 - 62. TWO unstable stationary points, two critical points, forming the 
following sequence in the interval [ -!2%, 01: 8,” < l&o < l3,* < e20 (Fig.3e). All trajectories 
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are discontinuous at es*. All motions break the feedback loop. 

3. Regions of coupled motion. The phase portraits of Fig.3 describe the motion 
of the system with two-way communication between the support point and the surface. lbroughout 
the sequel we shall assume that the leg is not attached at the point S. Motion with non- 
restoring communication will take place along the phase trajectories of Fig.3 if&>Othrough- 
out. 

Putting 8 = 0l.r in (1.61, we see that at the stationary points Rr = 1. Since RZ is 
continuous, it follow that in sufficiently small neighbourhoods of these points the vertical 
reaction is positive. In particular, if the system is in the stable equilibrium position 
8=8p, or performing sufficiently small oscillations in the vicinity of the latter, the 
non-restoring communication of the leg with the surface will be maintained: the device will 
remain standing for as long as desired on one leg, balanced by the body about the lower (non- 
vertical) position 8,'. 

Determination of the sign of Rz in all other (non-oscillatory) motions of the system 
requires further investigation. 

We will write the value (1.8) of Rz along the phase trajectories as follows: 

RZ = [(f(e)- ~'*)(@cos~-- g&O)] /(j(D) (3.1) 

f(e)=j[d,-((6+sinO)sine]/(Q00ae--sine) (3.2) 

It is clear from (3.1) that Rs changes sign when f(O)=O'r or @ (e) = 0. In other 
words, in the (e, et) plane the curve 

8’ = x(e) = kff (3.3) 

and the critical lines 8 = O:,,, wherever defined, will be the boundaries of regions of 
coupled motion (regions in which the relation RZ> 0 is maintained). 

By (3.2) and (3.7). 

f(ei*) = j(6 + sine,*) /s (e,*) = ei'z(ci*, ei*), i = 1, 2 

Consequently, f(O,*)<O for any j, 6,h, i.e., the curve x (8) =&fm(e) has no points 
in common with the stright line 8 = 8,". If condition (2.8) holds, then f(O,*)>O, otherwise 

f to,*) < 0. This means that the curve x(e) cuts the critical line e = es* if and only if 
there is a continuous phase trajectory 8'(c s*,8) passing through the line 8 = Or*. Both 
curves - 8' (c,*, e) and x (e) - intersect the straight line e = e,* at one point. 

Substitute expression (1.3) for (D(8) into (3.2) : 

f (e) = j (~09 e + h cos e + j - l)/(h + j cos e) (3.4) 

Fig.4 shows the types of behaviour of the curve x(8) for different values of j, h. 

Fig.4 

These different types will be described for i$2 assuming, to fix our ideas, that 
8 +?a [-Zn,O]. 

lo , O<h<Zv/i--1. The function f(0) has no roots. At 0 = 0m = -2n - Qila or Cl= 
O;rz= --arccos(-Mj) the denominator of (3.4) vanishes, and the function f Pa changes sign. The 
curve x(0) is defined in the intervals I--2% 0hll and @ha* 01 (Fig.4,1°). 

20. 21/q<h<j. The function f (0) is discontinuous at points ehl. ehn and has four 
roots in the interval I--2n,0]: O1 = -2x - e4,a2 = -2~ - 0,,9,,(= -arccos ]Va (FFh - l/h2 - 4j + 411. The 
curve x(0) is shown in Fig,4,2o. 

30. h>j. The function f(0) is continuous and has roots el,Ba. The curve x (e) is 
defined in the intervals [--2n,0,1 and I%,01 (Fig.4.3O) , 

If j>2 the curve x(0) may have one of two distinct forms: lo. h<j (Fig.4;l") 
and 3O. h>,f (Fig.4‘3'). 

We remark moreover that 
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Appealing to the above analysis, we can determine the regions in the phase plane where 

&? > 0 - the hatched regions in the phase portraits of Fig.3. Their structure is determined 
by the values of the parameters j,S, h and depends, first, on the relative positions of the 
curves x (6). tl = 0;,, and, second, on the form of the curve x(e). 

The structure of the regions of coupled motion is simplest when r<j (no critical 
positions; Fig.3a, b). Rz has the same sign as the numerator in (3.1) : RZ > 0 if 

(f (e] - ey + j cos e) > 0 (3.6) 

This inequality will hold if e E Iehl, ehai or 8’2 <f(e). The structure of the regions 
of coupled motion is readily understood by comparing Fig.3b with Fig.4,1° and Fig.3a with 
Fig.4.2O. 

If r>j, the regions of RZ > 0 for 8 E 1O1*, &*I are defined by the inequality 
inverse to (3.6), and for I3 3 IB1*, e,*l by condition (3.6). Examples are shown in Fig.3c-e. 

We will now show how the region of coupled motion changes as the parameters 6, h vary 
in the plane j = coast. Fig.5 is a section of (j.6,h) space by such a plane, in Fig.5,l for 

i-C2 and in Fig.5,,2 for j> 2. The solid lines bound subspaces (strips l-3O corresponding 
to the different forms of the curve x(O) (Fig.4) . The dashed curves bound sectors a-c 
corresponding to the 'different types of phase portrait (Fig.3). The intersection of one of 
the strips l-3O with a sector a-c will be denoted by the appropriate digit and letter. 

Fig.5 

It is obvious from (3.4) that if j= const, h= cona the form of the 
unchanged. We describe the evolution of the regions of coupled motion 
lines h = con&. 

To fix our ideas, we assume that BE]--2n,O]. 
lo . h = h, = coast; 0 <h, < 2 fj - 1. j < 2 or 0 <h, < j, j > 2 (strip lo 

for the curve x(e)). The straight line h= h, intersects either sectors 
loa, 1°d, lot (Fig.5). 

curve x (8) rem&ins 
along the straight 

in Fig.5, Fig.4,1° 
loa, 193, lot or 

loa, lob (6<I/jz- h2). The regions R,>O corresponding to these sectors areexactly 

the same. An example for lob is shown in Fig.3b. 
lot, 1°d (6>vjmj. At fi=l/v (on the boundary of sectors lob-lot or loa-1°d) 

a critical line 8= el*= 8,' appears in the phase plane: it coincides with the right vertical 
asymptote of the function j(O): 8, * = es*= ehl. As 6 increases from l/m to +co, the line 
e= el* moves left from e= eh2 t0 e= --n, and the line B= 8** right from f3 =t& to O= o 
(Fig.3d). The line 6= 01* does not intersect ~(6) and lies between the asmptotes: e,,, < 
e,* < k.. but the line 8 = Bz* duts the curve and lies to the right of the asymptotes: 
e,* > k. As the parameter 6 goes through 6= 1 the type of phase portrait changes, but no 
change occurs in the general shape of the region R,>o. The region R,>O corresponding 
to sector 1°d is shown in Fig.3d. In order to construct the region Hz>0 for sector lot 
one must plot a similar hatched region in the phase portrait of Fig.3c. 

20. h = h, = const; :!I/- < h, < j, j < 2 (strip 2O in Fig.5,1) . Fig.4,2O for the curve 
x (0). 

The basic difference between the cases j<2 and j-2 (Fig.5,1, Fig.5,2) is that for 
j = const, j < 2 the function 

h (8) = (/ - 6%)/V/ (3.7) 

has a minimum 6= l/i, h,,i,= 2Jm. The existence of this minimum or, more precisely, the 
fact that the curve (3.7) may lie below the straight line h = j, implies the existence of a 
curve x(e) (Fig.4,Z0) and regions of coupled motion characteristic for strip 2O but not 
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existing in the case i>,2 (Fig.3a,c, Fig.6 lo, 2O). 

Fig.6 

All the regions Rr>O corresponding to the line h;= h, are multiply connected. If 
a<4 (sectors 2Oa, 2Od, 2Oe) the motion has stationary points. It can be shown that the 
unstable stationary point t)," lies to the right of all roots of the function f (%) (Fig. 4,~'): 
%zO > %r, while the following inequalities hold for the point et: if the point is stable 
(h < (j - @)/1/n) and 6 <1/E-_ then 8; <es; if the point is unstable (h > 0’ - P)/r/l - 6”), 
then es g elo G 8,; if the point is stable and 6>u/z-_ then %,">%,. 

Let 6,,6, 
v’zq. 

denote the points at which the line h=wnst cuts the curve (3.7) : 6,<-*6,> 

We will list the sectors cut out by the line h=h, and describe the corresponding regions 
R,>O. 

2Oa (0<6<I/la). There are not critical lines. The stable stationary point 8," lies 
to the left of the root es (Fig.3a). 

2od (l/i8<8<6<). Two critical lines, one of which (%= es*) cuts the curve x (e): 
ohs <w c es (Fig.G,lO). The stable stationary point is such that %,*<%,'<%,. As 6-6, we 
have es* - es, e,o - eg on the boundary of sectors 2Od, 2Oe (6 = 6,) all three points coincide: 
%*a = e,o = es. 

zOe &<6<6d. The region R,)O is shown in Fig.6,2".. The critical line %=%,* has no 
points in common either with the phase trajectories or with the curve x(e): Bs<Bs*<FJI. As d 
increases from 6= I& to'6= &a the line %=% ,* moves monotonically from position e= e, to pos- 
ition %= 8,. The Position of the unstable stationary point e,O isl%J<%,o<%,. 'As 6-6, we have 
elo - Ed%*--+% on the boundary of sectors 2 e,2'd (6-6,) all three points coincide: JJ;=%~*=%,. 

2Od (6, < 6 < 4); 2Oc (6) I). the line % = Br* intersects the curve x(e) to the right 
of the root 6, (Fig.3~). If 8*<6<1, the stable stationary point lies to the right of the 
critical point es*. When 6>1 the stationary points disappear, but the structure of the 
regions R,>O remains essentially the same. An example of the region R,>O for sector 
2Oc is shown in Fig.3c. 

3O. h = h, = ,cotmt; h, > j (strip 30 in Fig.5, Fig.4,3O for the curve x(8)). The curve * (0) 
is defined in the intervals [-2n,%,] and I%,, 01. Critical lines exist for any values of 6. 

3Oe (0<6<6,). The region R,>O is shown in Fig.3e. At 6=0 the lines 9 = B1,*. 
are symmetric about --n: e,* = -2~ - e,*, 9,’ = --~Tc cos (-j/h), 8% < el* < ea* ce,. As 6 increases 
monotonically both lines move to the right, in particular, at 6=6, we have Ba* = 8 

3Od (6, <6 < 4), 3'c (6>1). The region RZ->,O for sector 3Oc is shown in Fid:7. As 
6V+W we have el* _ --x, e,* -+ 0. 

4. Protracted grinding. It is obvious from the 
examples of Figs.3, 6, and 7 that all non-oscillatory motions - 
and some oscillatory ones - of the device break the feedback 
loop. 

If the body lies at time r = 0 between the critical angles, 
% (0) E (%;*, %a*), it must assume a critical position within a 
finite interval of time - the point 0 cannot be held fixed at 
all subsequent times. But in addition RZ changes sign at the 
critical positions, so that the support point cannot be held 
fixed either (Figs,3c-e, Figs. 6, 7). 

In other cases of non-oscillatory motion (% (O)G (%I*, %,*I) 

Fig.7 the vertical reaction will decrease to zero within a finite 
time and then become negative (Figs.3, 6, 7). 

At the instant RZ vanishes , the leg is detached from the surface and the device begins 
to fall. The angle through which the body turns while falling depends on the extent and 
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structure of the region of coupled motion. If the region Rz> 0 is simply connected Fig.3b), 
the angle may be quite large. The conditions for the regionto be simply connected are: r<j; 
for j<a,h<2fj - 1. Recalling that j = jc + 1 and jc -.J,J(Mp*) = P/p*, where jc is 
the central moment of inertia of the body and K is the central radius of inertia, we can 
write theee conditions in the dimensional variables: 

d2 3_ Ha -CF. K= (C.1) 

If H<2K, then K < p. 
The phase trajectories within a simply connected region Rz> 0 are trajectories 

either of bounded oscillations or of unlimited unwinding. It is interesting to consider a 
fairly long unwinding motion of the body, say lasting for several complete revolutions. It 
follows from (4.1) that this is possible if the support displacement d and height H are 
sufficiently small or if the device is designed with a sufficiently large central radius of 
inertia K. As j- m the region of coupled motion covers the entire phase plane (Fig.3b). 
This is possible only if K+ 00 (p fixed) or, more realistically, if P-+O(K fixed). Only 
in this last case, which has been discussed previously /3/, can the body unwind for an in- 
finitely long time. 

All the standing regimes described above may be regarded as limiting cases of locomotive 
regimes when the length of the step and the velocity tend to zero. They may be used as 
"generating" motions in the solution of various locomotion problems. 

5. Marking-time regime. If j is finite (K finite, P Z-O), any motion of the body 
through the upper vertical position makes the device fall (Figs.3, 6, 7). In some cases 
falling can be prevented by allowing the point of support to change and switching the support 
leg in time, say when 8 = 0. Repetition of this process results in the device "marking 
time", so to speak. In such regimes the body of the device will oscillate about the position 
e = 0. 

Marking time on a single support leg may be accomplished as follows. Suppose that the 
support point is situated on the NYaxis: S(0, ye,O). Fig.3a-d shows the phase portraits of 
the body's motion when ys = 6, S> 0 (the device is standing on its left leg). When yS = -6 
(standing on the right leg) the phase portraits are symmetric about the axis 8 = 0 to those 
shown. Consider the phase portraits of the composite motion defined by 8<0 for ys- 6, 
8>0 for ys=-6.. In other words, the coordinate of the support point obeys the 
law: ys = 6 sign e (for the support leg to be switched at 8 = 0, the control must be 
turned off at the hinge 0 of the support leg when 8 =o, and that of the other leg turned 
on at its hinge 0). Throughout the sequel we shall consider only such composite phase 
portraits. 

It is obvious from Fig.3 that in all five types of composite phase portrait there must 
exist closed phase trajectories - the trajectories of the oscillations performed by the body 
about its upper vertical position. We shall refer to the part of the composite phase plane 
in which all phase trajectories are closed trajectories of periddic motions about e-u as 
the oscillatory region. By definition, the oscillatory region does not contain critical or 
stationary points. Let 8’ (* c,, 0) denote the phase trajectories passing through the points 
(&8,, 0) of the phase plane, where 

! 
0 for6<1 

ev= - 
, OII^- 

for S>l, r<j 
for S>l, r>j 

The trajectories 8' (f +, e) are the boundaries of the oscillatory region for 0 E (e,, 
-4) ; all the types of oscillatory region are shown in Fig.8. If S>l, r<j, the oscil- 
latory region is unbounded (Fig.8.2°) t if 6>1, r.>j, the boundaries are the trajectories 

8’ (k ca*, e) and the straight lines 0 = f8$* (Fig.8,3O) . The oscillatory region is 
generally more extensive than the region Rz> 0 (Figs.8,2O, 3'). 

Fig.8 
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Within the intersection of the oscillatory region and the region of coupled motion there 
is a region of coupled oscillations, which we shall call the controllability region. The 
boundaries of the controllability regions are shown in Fig.8 by thick curves. All trajectories 
in these regions correspond to periodic motion of the body while marking time. It is 
assumed that during the first step the device is supported on its left leg: Us = 6, 8 < 0, 
during its second step it stands on its right leg: ys = --6,8>0; and so on. If each step 
takes time zk, the body will oscillate with period Zrk, inclining during each step in the 
direction of the supporting leg. 

The basic characteristics of these oscillations depend on the shape of the controllability 
region and are determined by the values of the parameters j,6, h. The shapes of the control- 
lability regions for different Earamater values may be described as follows. 

The phase trajectories of the oscillations can leave the region of coupled motion only 
through the boundary x(9) (Fig.8). The direction of the trajectories at different points of 
the 0,8' plane is determined by the vector field of the control (1.2) : 

w = {we, WY) 
we‘ =9’ , we, = [j (6 + sin 13) - (dcDide)ewo (e) (5.1) 

It follows from (5.1) that if 8'2 = j(6 + sin e)(dwde)-1 the phase trajectories have 
horizontal tangents. The condition 

8’ = q (e) = * Ij (6 + sin e)(d~/de)-l~~* (5.2) 

definesacontinuous curve n(e) in the phase plane. It can be proved that if 3 E (e,, -0,) 
then Irl (e) I< Ix(e) , and if 6g 1 then 18’ (cv, e) I c I q (e) I. Consequently, I 0' (c,, 

6) I< ix(g) I, i.e., the oscillatory region lies within the region of coupled motion, the 
controllability region coincides with the oscillatory region. 

When S> I the boundary of the region of coupled motion may lie within the oscillatory 
region. 

In a neighhourhood of the curve x(e), consider the function G (e, e’) = f (e) - 8’2. 
Within the region of coupled motion G(tJ,O')> 0, outside it G(e,g')< 0. Let A (e, eo 
denote the derivative of G(B,B') in the direction of the vector field (5;l): A (e,e’) = (w. 
grad G). Omitting the intermediate steps, we write the final expression for A (0, e’) on the 
curve x(e) : 

Ax = A (0, x (0)) = -2jWp (cos 0) sin W(h + j cos ey 

p(c0se)=3jc0sae+2h(2+j)cose+3ha-j(j-11) (5.3) 

The value of sign A, characteriees the behaviour of the phase trajectories on the 
boundary of the region RZ>O: if &>O, the function G(e,e') increases along the 
phase trajectory, the trajectory enters the region Rs> 0; but if A,<0 then G (e, e’) 
decreases and the trajectory leaves the region. The direction of the phase trajectories'on 
the boundary x(O)‘ determine the shape of the controllability region when S>l. 

Let 8 E I--n, Ol,e'.> 0. In this part of the phase plane sign Ax =sign [p (COST)]. 
Analysis shows that if h< (j - 4)/3, j> 4, then p (COS O)<O for any 8; if h>j, 

then p(cosO)>O for any 0. If (j-4)13,<h,<j then p (cos e) has roots in the interval 
I-x,01, one of which - the largest - characterizes the shape of the controllability region 
for 6> 1. Denote this root by O,,. We have 

cos 8, = (--h (j + 2) + {(j - l)V? (j - 4) + 3ja1)“~)l(3j) (5.4) 

dp (cosO,)idB > 0, and if9 E (Ov, 01 then p (case)> 0. The function p(cos8). changes sign in. 
the interval(& 0) only if Br, E(Oy, 0). This condition holds if S>l, r<j. When 

r>j(k+ = &*), further analysis is necessary. 
s> 1, 

Using the equation 

cos 8, = cam ea* (5.5) 
one can determine for any j, h, h<j, a number 6, (j,h) such that whenever ? < 6 < 6, (j, h) 
we have eP E (O,, 0), and whenever 6> mar (1, 6,(j, h)) we have 0, ~(9~~0). The right-hand 
side of Eq.cS.51 is defined by (5.4) and the left-hand side by (2.1). 

The surface s=l,s=s,(j,h),~=(j-4)13 (for j>4) divides the parameter space 
(j, 6, h) into subspaces, each with its specific type of controllability region. Fig.9 is a 
projection of this partition on a plane j = const, j>4. For examples of controllability 
regions, see Fig.8. 

The different types of controllability region will now be described. 
lo. 6<l.' The controllability region coincides with the oscillatory region (Fig.8;l"). 

The amplitudes of the oscillations are bounded by [0,"[gn/2, and the angular velocity by 
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I 0’ (cao, 0) I < v-7. The duration of the step is not bounded: the device may stand on one leg 
for a finite but for as long a time as desired if the amplitude of the oscillations is as 
close to IO,0l as desired. 

2o. 6> I, h< (J -- 4)/3,j > 4. FOX any 0 we have p(co~U)~. 
0 - if tlE(--n,O) the phase trajectories can only leave 
the region of coupled motion. The boundary of the 
controllability region is the trajectory 0' (-kcj, 0) passing 
through the poznts (O,? ’ Ia. An example for r<.i is 
illustrated in Fig.8,2. 

On the boundary trajectory the maximum angular velocity 
for 8=0 is attained: 

Fig.9 Note that when 6>1 the number t/7 is a bound for 

0' (c, 0) only at the time the legs are switched fe = 0); 
duritng thestep (@So) the angular velocity Wfc,fJ) may exceed f? (Fig.8,2*). Eoreover, 
when 6>i the step time and oscillation period are bounded. 

It follows from (1.6) and (1.7) that in motion along a boundary trajectory W(f~j,@) the 
support leg is switched under the action of a continuous control: when 13~0 p=O; the support 
leg is detached and the other leg placed in position "softly": when O=O R,=O. 

30 . h>ti- 4)/3, 1 < 6 < 6, (IV h). The function p (cosB) has a root ep E (e,. 0). If 0fn (--n,$J 
the oscillatory trajectories can only leave the region RZ>O, and if BE&,,@ they can 
only enter it. The trajectory through the points &@,,x(&8,) is tangent to x(6). This 
trajectory is precisely the boundary of the controllability region. Eig.8,3* gives an example 
for r>j. 

40 . h> (i - 4)/3, 6 >, mex (1,6, (j, h)). When 0 E (0,, 0) we have p (co9 0)> 0. Tbe oscillatory 
trajectories dannot leave the region A,>& The controllability region coincides with the 
oscillatory region. The amplitude of the oscillations may exceed nf2, e.g., when 6, (1, h) < 
6<i we have 1 Bv [ = 1. en* 1 > n/2. 

The marking-time regimes just constructed may be regarded as a limiting case of space 
locomotion when the length of the step and velocity tend to zero. Imposing an additional 
condition on the system parameters (j = 1, jc = 0), one can construct a model of space loco- 
motion in which these regimes serve as the basic components *.(*see the previous footnote). 
The motion of the device in this model takes place along the NX axis (Fig.l), the transversal 
oscillations of the centre of mass do not depend on the longitudinal motion; these oscillations 
are described by Eq.Cl.2) and constitute a special case (j = 1) of the oscillations considered 
above. 
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